Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 11 de 11
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.04.15.22273412

Résumé

To inform public health policy, it is critical to monitor COVID-19 vaccine effectiveness (VE), including against acquiring infection. We estimated VE using a retrospective cohort study among repeat blood donors who donated during the first half of 2021, demonstrating a viable approach for monitoring of VE via serological surveillance. Using Poisson regression, we estimated overall VE was 88.8% (95% CI: 86.2-91.1), adjusted for demographic covariates and variable baseline risk. Time since first reporting vaccination, age, race-ethnicity, region, and calendar time were statistically significant predictors of incident infection. Studies of VE during periods of Delta and Omicron spread are underway.


Sujets)
COVID-19
2.
researchsquare; 2022.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1551694.v2

Résumé

To inform public health policy, it is critical to monitor COVID-19 vaccine effectiveness (VE), including against acquiring infection. We estimated VE using a retrospective cohort study among repeat blood donors who donated during the first half of 2021, demonstrating a viable approach for monitoring of VE via serological surveillance. Using Poisson regression, we estimated overall VE was 88.8% (95% CI: 86.2–91.1), adjusted for demographic covariates and variable baseline risk. Time since first reporting vaccination, age, race-ethnicity, region, and calendar time were statistically significant predictors of incident infection. Studies of VE during periods of Delta and Omicron spread are underway.


Sujets)
COVID-19
3.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.05.13.21257177

Résumé

Background: Blood donors are increasingly being recognized as an informative resource for surveillance. We aimed to review and characterize SARS-CoV-2 seroprevalence studies conducted using blood donors to investigate methodology and provide guidance for future research. Methods: We conducted a scoping review of peer-reviewed and preprint publications between January 2020 to January 2021. Two reviewers used standardized forms to extract seroprevalence estimates and data on methodology pertaining to population sampling, periodicity, assay characteristics and antibody kinetics. National data on cumulative incidence and social distancing policies were extracted from publicly available sources and summarized. Results: Thirty-three studies representing 1,323,307 blood donations from 20 countries worldwide were included (sample size per study ranged from 22 to 953,926 donations). Seroprevalence rates ranged from 0% to 76% (after adjusting for waning antibodies). Overall, less than 1 in 5 studies reported standardized seroprevalence rates to reflect the demographics of the general population. Stratification by age and sex were most common (64% of studies), followed by region (48%). 52% of studies reported seroprevalence at a single time point. Overall, 27 unique assay combinations were identified, 55% of studies used a single assay and only 39% adjusted seroprevalence rates for imperfect test characteristics. Among the eight nationally representative studies case detection was most underrepresented in Kenya (1:1264). Conclusion: As of December 11, 2020, 79% of studies reported seroprevalence rates <10%; thresholds far from reaching herd immunity. In addition to differences in community transmission and diverse public health policies, study designs and methodology were likely contributing factors to seroprevalence heterogeneity.


Sujets)
Infections à coronavirus
4.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.10.25.20219170

Résumé

BackgroundCOVID-19 Convalescent Plasma (CCP) is a promising treatment for COVID-19. Blood collectors have rapidly scaled up collection and distribution programs. MethodsWe developed a detailed simulation model of CCP donor recruitment, collection, production and distribution processes. Simulations based on epidemics in 11 U.S. states, in which key parameters were varied over wide ranges, allowed identification of the drivers of ability to calibrate collections capacity and ability to meet demand for CCP. ResultsChanges in collection capacity utilization lagged increases and decreases in COVID-19 hospital discharges, and never exceeded 75% in most simulations. Demand could be met for most of the simulation period in most simulations, but in states with early sharp increases in hospitalizations a substantial portion of demand went unmet during these early peaks. Modeled second wave demand could generally be met with stockpiles established during first epidemic peaks. Apheresis machine capacity (number of machines) and probability that COVID-19 recovered individuals are willing to donate were the most important supply-side drivers of ability to meet demand. Recruitment capacity was important in states with early peaks. ConclusionsEpidemic trajectory was the most important determinant of ability to meet demand for CCP, although our simulations revealed several contributing operational drivers of CCP program success.


Sujets)
COVID-19
5.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.09.16.20194787

Résumé

The herd immunity threshold is the proportion of a population that must be immune to an infectious disease, either by natural infection or vaccination such that, in the absence of additional preventative measures, new cases decline and the effective reproduction number falls below unity. This fundamental epidemiological parameter is still unknown for the recently-emerged COVID-19, and mathematical models have predicted very divergent results. Population studies using antibody testing to infer total cumulative infections can provide empirical evidence of the level of population immunity in severely affected areas. Here we show that the transmission of SARS-CoV-2 in Manaus, located in the Brazilian Amazon, increased quickly during March and April and declined more slowly from May to September. In June, one month following the epidemic peak, 44% of the population was seropositive for SARS-CoV-2, equating to a cumulative incidence of 52%, after correcting for the false-negative rate of the antibody test. The seroprevalence fell in July and August due to antibody waning. After correcting for this, we estimate a final epidemic size of 66%. Although non-pharmaceutical interventions, plus a change in population behavior, may have helped to limit SARS-CoV-2 transmission in Manaus, the unusually high infection rate suggests that herd immunity played a significant role in determining the size of the epidemic.


Sujets)
COVID-19
6.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.09.21.306837

Résumé

The COVID-19 pandemic has revealed that infection with SARS-CoV-2 can result in a wide range of clinical outcomes in humans, from asymptomatic or mild disease to severe disease that can require mechanical ventilation. An incomplete understanding of immune correlates of protection represents a major barrier to the design of vaccines and therapeutic approaches to prevent infection or limit disease. This deficit is largely due to the lack of prospectively collected, pre-infection samples from indiviuals that go on to become infected with SARS-CoV-2. Here, we utilized data from a screen of genetically diverse mice from the Collaborative Cross (CC) infected with SARS-CoV to determine whether circulating baseline T cell signatures are associated with a lack of viral control and severe disease upon infection. SARS-CoV infection of CC mice results in a variety of viral load trajectories and disease outcomes. Further, early control of virus in the lung correlates with an increased abundance of activated CD4 and CD8 T cells and regulatory T cells prior to infections across strains. A basal propensity of T cells to express IFNg and IL17 over TNFa also correlated with early viral control. Overall, a dysregulated, pro-inflammatory signature of circulating T cells at baseline was associated with severe disease upon infection. While future studies of human samples prior to infection with SARS-CoV-2 are required, our studies in mice with SARS-CoV serve as proof of concept that circulating T cell signatures at baseline can predict clinical and virologic outcomes upon SARS-CoV infection. Identification of basal immune predictors in humans could allow for identification of individuals at highest risk of severe clinical and virologic outcomes upon infection, who may thus most benefit from available clinical interventions to restrict infection and disease.


Sujets)
Syndrome respiratoire aigu sévère , COVID-19
7.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.09.20.297242

Résumé

Coronavirus interaction with viral receptor is a primary genetic determinant of host range and tissue tropism. SARS-CoV-2 utilizes ACE2 as the receptor to enter the host cell in a species-specific manner. We and others have previously shown that ACE2 orthologs from New World monkeys, koala and mouse cannot interact with SARS-CoV-2 to mediate viral entry, and this defect can be restored by humanization of the restrictive residues in New World monkey ACE2. To better understand the genetic determinants of susceptibility of ACE2 orthologs to viral entry, we compared koala and mouse ACE2 sequences with human ortholog, and identified the key residues in koala or mouse ACE2 that restrict its viral receptor activity. Humanization of these critical residues could render the capabilities of koala and mouse ACE2 to bind viral spike protein and facilitate the viral entry. Our work identifies the genetic determinant of ACE2 for SARS-CoV-2 susceptibility, and a single mutation could restore the mouse ACE2 receptor activity, providing a potential avenue for the development of mouse model of SARS-CoV-2.

8.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.09.21.306357

Résumé

Less than a year after its emergence, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected over 22 million people worldwide with a death toll approaching 1 million. Vaccination remains the best hope to ultimately put this pandemic to an end. Here, using Trimer-Tag technology, we produced both wild-type (WT) and furin site mutant (MT) S-Trimers for COVID-19 vaccine studies. Cryo-EM structures of the WT and MT S-Trimers, determined at 3.2 Angstrom and 2.6 Angstrom respectively, revealed that both antigens adopt a tightly closed conformation and their structures are essentially identical to that of the previously solved full-length WT S protein in detergent. These results validate Trimer-Tag as a platform technology in production of metastable WT S-Trimer as a candidate for COVID-19 subunit vaccine.


Sujets)
COVID-19
9.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.09.18.302901

Résumé

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a highly contagious virus that underlies the current COVID-19 pandemic. SARS-CoV-2 is thought to disable various features of host immunity and cellular defense. The SARS-CoV-2 nonstructural protein 1 (Nsp1) is known to inhibit host protein translation and could be a target for antiviral therapy against COVID-19. However, how SARS-CoV-2 circumvents this translational blockage for the production of its own proteins is an open question. Here, we report a bipartite mechanism of SARS-CoV-2 Nsp1 which operates by: (1) hijacking the host ribosome via direct interaction of its C-terminal domain (CT) with the 40S ribosomal subunit and (2) specifically lifting this inhibition for SARS-CoV-2 via a direct interaction of its N-terminal domain (NT) with the 5 untranslated region (5 UTR) of SARS-CoV-2 mRNA. We show that while Nsp1-CT is sufficient for binding to 40S and inhibition of host protein translation, the 5 UTR of SARS-CoV-2 mRNA removes this inhibition by binding to Nsp1-NT, suggesting that the Nsp1-NT-UTR interaction is incompatible with the Nsp1-CT-40S interaction. Indeed, lengthening the linker between Nsp1-NT and Nsp1-CT of Nsp1 progressively reduced the ability of SARS-CoV-2 5 UTR to escape the translational inhibition, supporting that the incompatibility is likely steric in nature. The short SL1 region of the 5 UTR is required for viral mRNA translation in the presence of Nsp1. Thus, our data provide a comprehensive view on how Nsp1 switches infected cells from host mRNA translation to SARS-CoV-2 mRNA translation, and that Nsp1 and 5 UTR may be targeted for anti-COVID-19 therapeutics.


Sujets)
COVID-19
10.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.09.18.304493

Résumé

COVID-19 vaccines are being rapidly developed and human trials are underway. Almost all of these vaccines have been designed to induce antibodies targeting spike protein of SARS-CoV-2 in expectation of neutralizing activities. However, non-neutralizing antibodies are at risk of causing antibody-dependent enhancement. Further, the longevity of SARS-CoV-2-specific antibodies is very short. Therefore, in addition to antibody-induced vaccines, novel vaccines on the basis of SARS-CoV-2-specific cytotoxic T lymphocytes (CTLs) should be considered in the vaccine development. Here, we attempted to identify HLA-A*02:01-restricted CTL epitopes derived from the non-structural polyprotein 1a of SARS-CoV-2. Eighty-two peptides were firstly predicted as epitope candidates on bioinformatics. Fifty-four in 82 peptides showed high or medium binding affinities to HLA-A*02:01. HLA-A*02:01 transgenic mice were then immunized with each of the 54 peptides encapsulated into liposomes. The intracellular cytokine staining assay revealed that 18 out of 54 peptides were CTL epitopes because of the induction of IFN-{gamma}-producing CD8+ T cells. In the 18 peptides, 10 peptides were chosen for the following analyses because of their high responses. To identify dominant CTL epitopes, mice were immunized with liposomes containing the mixture of the 10 peptides. Some peptides were shown to be statistically predominant over the other peptides. Surprisingly, all mice immunized with the liposomal 10 peptide mixture did not show the same reaction pattern to the 10 peptides. There were three pattern types that varied sequentially, suggesting the existence of an immunodominance hierarchy, which may provide us more variations in the epitope selection for designing CTL-based COVID-19 vaccines. ImportanceFor the development of vaccines based on SARS-CoV-2-specific cytotoxic T lymphocytes (CTLs), we attempted to identify HLA-A*02:01-restricted CTL epitopes derived from the non-structural polyprotein 1a of SARS-CoV-2. Out of 82 peptides predicted on bioinformatics, 54 peptides showed good binding affinities to HLA-A*02:01. Using HLA-A*02:01 transgenic mice, 18 in 54 peptides were found to be CTL epitopes in the intracellular cytokine staining assay. Out of 18 peptides, 10 peptides were chosen for the following analyses because of their high responses. To identify dominant epitopes, mice were immunized with liposomes containing the mixture of the 10 peptides. Some peptides were shown to be statistically predominant. Surprisingly, all immunized mice did not show the same reaction pattern to the 10 peptides. There were three pattern types that varied sequentially, suggesting the existence of an immunodominance hierarchy, which may provide us more variations in the epitope selection for designing CTL-based COVID-19 vaccines.


Sujets)
COVID-19
11.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.05.19.20107482

Résumé

We report very low SARS-CoV-2 seroprevalence in two San Francisco Bay Area populations. Seropositivity was 0.26% in 387 hospitalized patients admitted for non-respiratory indications and 0.1% in 1,000 blood donors. We additionally describe the longitudinal dynamics of immunoglobulin-G, immunoglobulin-M, and in vitro neutralizing antibody titers in COVID-19 patients. Neutralizing antibodies rise in tandem with immunoglobulin levels following symptom onset, exhibiting median time to seroconversion within one day of each other, and there is >93% positive percent agreement between detection of immunoglobulin-G and neutralizing titers.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche